Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Fatih Mehmet Emen, ${ }^{\text {a }}$ Ulrich Flörke, ${ }^{\text {b }} *$ Nevzat Külcü ${ }^{\mathbf{a}}$ and Hakan Arslan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey, and ${ }^{\mathbf{b}}$ Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.107$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N^{\prime}-(2-Chlorobenzoyl)- N-(pyrrolidin-1-yl)thiourea

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{OS}$, the molecule has a twisted conformation with regard to the carbonyl and thiocarbonyl groups. In the crystal structure, hydrogenbonded pairs of molecules are formed which stack along [100].

Comment

The title compound, (I), is another example of our newly synthesized thiourea derivatives (Arslan et al., 2003a). Its molecular structure is closely related to that of N^{\prime}-(4-chloro-benzoyl)- N, N-diphenylthiourea (Arslan et al., 2003b) or anthrylcarbonyl- N-pyrrolidinethiourea (Bricks et al., 2000). Essential bond lengths, viz. $\mathrm{S} 1-\mathrm{C} 8=1.676$ (3) $\AA, \mathrm{C} 8-\mathrm{N} 1=$ 1.408 (3) $\AA, \mathrm{N} 1-\mathrm{C} 7=1.366$ (3) \AA and $\mathrm{C} 7-\mathrm{O} 1=1.211$ (3) \AA, are similar to the corresponding bond lengths in the cited compounds. The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$ torsion angles of $-4.2(4)$ and $57.7(4)^{\circ}$, respectively. The crystal packing is dominated by strong intermolecular $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{~S} 1(-x+1,-y+1,-z+1)$ hydrogen bonds, with $\mathrm{H} \cdots \mathrm{S}=2.48 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S} 151^{\circ}$, forming dimeric pairs of molecules that are stacked along [100]. There is a weak intramolecular interaction, $\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}$, with $\mathrm{C}-\mathrm{O}$ $2.47 \AA$ and an angle of 107° at H . All these values are normalized for $\mathrm{N}-\mathrm{H}=1.03 \AA$, enabling a better comparison of hydrogen-bonding geometries from different structures.

Experimental

The title compound was prepared according to the method of Arslan et al. (2003a), by converting 2-chlorobenzoyl chloride into 2-chlorobenzoyl isothiocyanate and then condensing with pyrrolidine in acetone solution at 313 K . The compound was recrystallized from ethanol.

Crystal data	
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{OS}$	$Z=2$
$M_{r}=268.75$	$D_{x}=1.412 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.299(1) \AA$	Cell parameters from 25
$b=10.039(1) \AA$	reflections
$c=10.096(1) \AA$	$\theta=7.1-15.9^{\circ}$
$\alpha=67.03(1)^{\circ}$	$\mu=0.45 \mathrm{~mm}^{-1}$
$\beta=69.32(1)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=88.43(1)^{\circ}$	Prism, colourless
$V=631.98(12) \AA^{\circ}$	$0.28 \times 0.25 \times 0.12 \mathrm{~mm}$

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Data collection

Bruker $P 4$ diffractometer	$R_{\text {int }}=0.023$
ω scans	$\theta_{\max }=26.4^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 9$
\quad (North et al., 1968)	$k=-12 \rightarrow 12$
$\quad T_{\text {min }}=0.867, T_{\max }=0.947$	$l=-11 \rightarrow 11$
3181 measured reflections	3 standard reflections
2552 independent reflections	every 397 reflections
1692 reflections with $I>2 \sigma(I)$	intensity decay: $<1 \%$
Refinement	
Refinement on F^{2}	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0363 P)^{2}\right.$
$w R\left(F^{2}\right)=0.107$	$\quad+0.1907 P]$
$S=1.02$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
2552 reflections	$(\Delta / \sigma)_{\max }=0.001$
155 parameters	$\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3}$
H-atom parameters constrained	$\Delta \rho_{\min }=-0.29$ e \AA^{-3}
	Extinction correction: SHELXL97
	Extinction coefficient: $0.049(4)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C8	$1.676(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.408(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.211(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.312(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.366(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.502(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$125.5(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$116.7(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$124.0(3)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$124.0(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$122.5(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$119.23(19)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$113.4(2)$		

Figure 2
Packing diagram, viewed along [100]. Intermolecular hydrogen bonding is indicated by dashed lines.

The H atoms were introduced at calculated positions as riding atoms, with bond lengths of $0.86(\mathrm{~N}-\mathrm{H}), 0.93(\mathrm{C}-\mathrm{H}$ aromatic), and $0.97 \AA\left(\mathrm{CH}_{2}\right)$. The isotropic displacement parameters, $U_{\text {iso }}(\mathrm{H})$, were set equal to $1.2 U_{\text {eq }}$ (parent atom).

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: $S H E L X T L$.

References

Arslan, H., Flörke, U. \& Külcü, N. (2003a). Transition Met. Chem. In the press. Arslan, H., Flörke, U. \& Külcü, N. (2003b). Acta Cryst. E59, o641-o642.
Bricks, J. L., Rurack, K., Radeglia, R., Reck, G., Schulz, B., Sonnenschein, H. \& Resch-Genger, U. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1209-1214.
Bruker (1996). XSCANS. Version 2.21. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

